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Abstract. Starting from the generalized exponential function expκ (x) =
(√

1 + κ2x2 + κx
)1/κ

, with
exp0 (x) = exp(x), proposed in reference [G. Kaniadakis, Physica A 296, 405 (2001)], the survival function
P> (x) = expκ (−βxα), where x ∈ R+, α, β > 0, and κ ∈ [0, 1), is considered in order to analyze the data on
personal income distribution for Germany, Italy, and the United Kingdom. The above defined distribution is
a continuous one-parameter deformation of the stretched exponential function P 0

> (x) = exp (−βxα) — to
which reduces as κ approaches zero — behaving in very different way in the x → 0 and x → ∞ regions.
Its bulk is very close to the stretched exponential one, whereas its tail decays following the power-law
P> (x) ∼ (2βκ)−1/κ x−α/κ. This makes the κ-generalized function particularly suitable to describe simul-
taneously the income distribution among both the richest part and the vast majority of the population,
generally fitting different curves. An excellent agreement is found between our theoretical model and the
observational data on personal income over their entire range.

PACS. 02.50.Ng Distribution theory and Monte Carlo studies – 02.60.Ed Interpolation; curve fitting –
89.65.Gh Economics; econophysics, financial markets, business and management

1 Introduction

A renewed interest in studying the distribution of income
has emerged over the last years in both the physics and
economics communities [1]. The focus has been mostly
put on empirical analysis of extensive datasets to infer
the exact shape of personal income distributions, and to
design theoretical models that can reproduce them [2].

A natural starting point in this area of enquiry was
the observation that the number of persons in a popula-
tion whose incomes exceed x is often well approximated by
Cx−α, for some real C and some positive α, as Pareto [3–5]
argued over 100 years ago. However, theoretical and em-
pirical work rapidly pointed out the fact that it is only in
the upper tail of the income distribution that a Pareto-
like behavior can be expected [6], while the bulk of the
income — held by the 95% or so of the population — is
governed by a completely different law. Therefore, many
recent papers within this literature have sought to char-
acterize the distribution of income by a mixture of known
statistical distributions, even if there is a dispute about
what these distributions are: indeed, while it seems to be
generally acknowledged that the top 1–5% of incomes fol-
lows the Pareto’s law, an exact and unequivocal charac-
terization of the low to medium income region of the dis-
tribution is still evasive. For example, references [7–15]
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claim that this is lognormal, while according to refer-
ences [16–20] the distribution of personal income for the
majority of the population should follow the exponential
law.

In the present work we address the issue of data anal-
ysis related to the size distribution of income by adopting
a statistical mechanics approach introduced by one of us
in references [21–25], based on the one-parameter gener-
alization of the exponential function defined through

expκ (x) =
(√

1 + κ2x2 + κx
)1/κ

, x ∈ R. (1.1)

The properties of the function expκ (x) ∈ C∞ (R) have
been considered extensively in the literature. We recall
briefly that in the κ → 0 limit the function expκ (x)
reduces to the ordinary exponential, i.e. exp0 (x) =
exp (x), and for x → 0 — independently on the value of
κ — behaves very similarly with the ordinary exponential,
holding for κ2x2 < 1 the following Taylor expansion

expκ (x) = 1 + x +
x2

2
+

(
1 − κ2

) x3

3!
+ . . . (1.2)

It is remarkable that the first three terms of the Taylor ex-
pansion are the same as the ordinary exponential. On the
other hand, the most interesting property of expκ (x) for
the applications in statistics is the power-law asymptotic
behavior

expκ (x) ∼
x→±∞

|2κx|±1/|κ| . (1.3)
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Fig. 1. (a) Plot of the κ-generalized CCDF given by equation (2.1) versus x for some different values of β (=0.20, 0.40, 0.60, 0.80),
and fixed α (=2.50) and κ (=0.75). (b) Plot of the κ-generalized PDF given by equation (2.4) versus x for some different values
of β (=0.20, 0.40, 0.60, 0.80), and fixed α (=2.50) and κ (=0.75). Notice that the distribution spreads out (concentrates) as the
value of β decreases (increases).

The generalized logarithmic function lnκ (x) ∈ C∞ (R+)
is defined as the inverse function of expκ (x), namely
lnκ (expκ x) = expκ (lnκ x) = x, and is given by

lnκ (x) =
xκ − x−κ

2κ
. (1.4)

Starting from the generalized logarithm, the new entropy

Sκ = −〈lnκ (f)〉 = −
∫

dxf (x) lnκ (f(x) (1.5)

has been introduced, which can be written explicitly as

Sκ =
∫

dx
f (x)1−κ − f (x)1+κ

2κ
, (1.6)

being f (x) the probability distribution function. The
latter entropy has the standard properties of the or-
dinary Boltzmann-Shannon entropy (which recovers in
the κ → 0 limit): is thermodynamically-stable, is Lesche-
stable, obeys the Khinchin axioms of continuity, maximal-
ity, expandability and generalized additivity.

After maximizing the entropy (1.6) under the proper
constraints according to the Jaynes Maximum Entropy
Principle of statistical mechanics, the probability distri-
bution function

p (x) = α expκ

(
−E (x) − µ

λkBT

)
(1.7)

obtains, where

λ =
√

1 − κ2 and α =
(

1 − κ

1 + κ

)1/2κ

. (1.8)

For a particle system, x represents the particle velocity,
E (x) the energy, µ the chemical potential, T the temper-
ature, and kB the Boltzmann constant.

Also the distribution function

f (x) =
1
Z

expκ (−βxα) (1.9)

has been considered to define both probability distribu-
tion functions (with Z a normalization constant) as well
as cumulative distribution functions (with Z = 1). The
distribution functions given by equations (1.7) and (1.9)
have been used to analyze also non-physical systems.

The main result of the present effort is that the cumu-
lative distribution function defined by equation (1.9) can
describe the whole spectrum of the size distribution of in-
come, ranging from the low region to the middle region,
and up to the power-law tail, pointing in this way toward
a unified approach to the problem.

The paper is organized as follows. In Section 2 we con-
sider the main properties of the κ-generalized statistical
distribution functions. In Section 3, in order to asses the
reliability of the proposed κ-distribution, we compare the
theoretical curve with the census data for personal income
in Germany, Italy, and the United Kingdom. Finally, in
Section 4 some concluding remarks are reported.

2 The κ-generalized statistical distribution

The κ-generalized Complementary Cumulative Distribu-
tion Function (CCDF) is given by

P> (x) = expκ (−βxα) , x ∈ R+, (2.1)

being P> (x) the probability of finding the distribution
variable with a value X greater than x. The income vari-
able x is defined as x = z/ 〈z〉, being z the absolute per-
sonal income and 〈z〉 its mean value. Then the dimen-
sionless variable x represents the personal income in units
of 〈z〉. The constant β > 0 is a characteristic scale, since
its value determines the scale of the probability distri-
bution: if β is large, then the distribution will be more



F. Clementi et al.: κ-generalized statistics in personal income distribution 189

Fig. 2. (a) Plot of the κ-generalized CCDF given by equation (2.1) versus x for some different values of α (=1.00, 2.00, 2.50, 3.00),
and fixed β (=0.20) and κ (=0.75). (b) Plot of the κ-generalized PDF given by equation (2.4) versus x for some different values
of α (=1.00, 2.00, 2.50, 3.00), and fixed β (=0.20) and κ (=0.75). Notice that the curvature (shape) of the distribution becomes
less (more) pronounced when the value of α decreases (increases). The case α = 1.00 corresponds to the ordinary exponential
function.

Fig. 3. (a) Plot of the κ-generalized CCDF given by equation (2.1) versus x for some different values of κ (=0.00, 0.30, 0.50, 0.80),
and fixed β (=0.20) and α (=2.50). (b) Plot of the κ-generalized PDF given by equation (2.4) versus x for some different values of
κ (=0.00, 0.30, 0.50, 0.80), and fixed β (=0.20) and α (=2.50). Notice that the upper tail of the distribution fattens (thins) as the
value of κ increases (decreases). The case κ = 0.00 corresponds to the ordinary stretched exponential (Weibull) function [26,27].

concentrated; if β is small, then it will be more spread
out (see Figs. 1a, 1b). The exponent α > 0 quantifies the
curvature (shape) of the distribution, which is less (more)
pronounced for lower (higher) values of the parameter,
as seen in Figures 2a, 2b. Finally, as one can observe in
Figures 3a and 3b, the deformation parameter κ ∈ [0, 1)
measures the fatness of the upper tail: the larger (smaller)
its magnitude, the fatter (thinner) the tail.

The function P> (x) defined through equation (2.1)
can be viewed as a generalization of the ordinary stretched
exponential [26], i.e. P 0

> (x) = exp (−βxα), which recov-
ers in the κ → 0 limit. It is remarkable that P> (x) for

x → 0+ behaves as the ordinary stretched exponential

P> (x) ∼
x→0+

exp (−βxα) , (2.2)

while for x → ∞ presents a power-law tail

P> (x) ∼
x→+∞

(2βκ)−1/κ
x−α/κ. (2.3)

The Probability Density Function (PDF), p (x) =
−dP> (x) /dx, is given by

p (x) =
αβxα−1 expκ (−βxα)

√
1 + β2κ2x2α

, (2.4)
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and can viewed as a generalization of the Weibull distribu-
tion [27], i.e. p0 (x) = αβxα−1 exp (−βxα), which recovers
in the κ → 0 limit. The function p (x) given by equa-
tion (2.4) for x → 0+ behaves as a Weibull distribution

p (x) ∼
x→0+

αβxα−1 exp (−βxα) , (2.5)

while for x → +∞ reduces to the Pareto’s law

p (x) ∼
x→+∞

α

κ
(2βκ)−1/κ

x−(α
κ +1). (2.6)

Starting from the law (2.4), one can calculate the mean
value 〈x〉 which, taking into account the meaning of the
variable x, results to be equal to unity

∞∫

0

xp (x) dx = 1. (2.7)

The latter relationship permits to express the parame-
ter β as a function of the parameters κ and α, obtaining

β =
1

2 |κ|

⎡

⎣ Γ
(

1
α

)

|κ| + α

Γ
(

1
2|κ| − 1

2α

)

Γ
(

1
2|κ| + 1

2α

)

⎤

⎦

α

, (2.8)

where Γ (x) is the Euler gamma function Γ (x) =∫ ∞
0

tx−1e−tdt. Thus the problem to determine the values
of the free parameters (κ, α, β) of the theory from the
empirical data reduces to a two parameter (κ, α) fitting
problem.

3 An application to personal income data

As a working example, we analyze the census data on per-
sonal income in three countries: Germany, Italy, and the
United Kingdom1.

The data used are drawn primarily from the Cross-
National Equivalent File (CNEF) 1980–2002, a commer-
cially available dataset compiled by researchers at Cornell
University which attempts to make comparable, among
others, the following panel surveys: the German Socio-
Economic Panel (GSOEP) and the British Household
Panel Study (BHPS)2. The income variable we use is the
post-government income, representing the combined in-
come after taxes and government transfers of the head,
partner, and other family members.

For Italy, which is not part of the CNEF, we use
the Survey on Household Income and Wealth (SHIW), a
household-based panel study carried out by the Bank of
Italy since 1977. In place of the post-government income

1 See references [14,15,28] for analysis referring to the same
countries and data sources.

2 For background on the CNEF, see reference [29] or
consult the CNEF homepage at the following web address:
http://www.human.cornell.edu/che/PAM/Research/Centers

-Programs/German-Panel/cnef.cfm

Table 1. Estimated parameters (with 95% confidence intervals
half-widths) of the κ-generalized distribution for the countries
and years shown in Figures 4–6. Also shown is the estimated
weighted average income.

Germany Italy United Kingdom

κ 0.5697 ± 0.0005 0.6944 ± 0.0006 0.7080 ± 0.0006

α 2.5659 ± 0.0007 2.2540 ± 0.0007 2.7357 ± 0.0009

β 0.8788 ± 0.0003 1.0087 ± 0.0004 0.9433 ± 0.0004

〈z〉 36315.67 ± 339.24 18087.92 ± 246.85 14982.20 ± 183.09

in the CNEF, we use the net disposable income variable
from the survey above — i.e., the income recorded after
the payment of taxes and social security contributions, de-
fined as the sum of four main components: compensation
of employees, pensions and net transfers, net income from
self-employment, and property income3.

The results obtained by fitting our theoretical model
through the observational data are reported in Table 1
and Figures 4–64. Panel (a) of the figures shows the

3 For a comprehensive discussion of the dataset, see refer-
ence [30]; the data are available for free download at the follow-
ing web address: http://www.bancaditalia.it/statistiche
/ibf/statistiche/ibf/microdati/dati/en archivio.htm

4 To find the parameter values that give the most desirable
fit, we have used the Constrained Maximum Likelihood (CML)
estimation method [31], which solves the weighted maximum
log-likelihood problem

l (x; θ) =
n∑

i=1

log p (xi; θ)
wi,

where n is the number of observations, wi is the survey weight
accommodating features of the sample design and the popu-
lation structure [32], p (xi; θ) is the probability of xi given θ,
the vector of parameters, subject to the non-linear equality
constraint given by equation (2.8) and bounds α, β > 0 and
κ ∈ [0, 1). The CML procedure finds values for the parame-
ters in θ such that l (x; θ) is maximized using the Sequential
Quadratic Programming (SQP) method [33] as implemented
in Matlab r© 7. We have then calculated the approximate 95%
confidence interval half-width around each parameter by using
the normal approximation

θ ± z1− α
2
· σθ,

where σθ denotes the estimate standard error — obtained from
a finite difference approximation to the asymptotic covariance
matrix of the maximum likelihood estimators of the parame-
ters, and z1−α/2 is defined such that Φ

(
z1−α/2

)
= 1−α/2, be-

ing Φ (·) the standard normal distribution function. The overall
analysis uses a simple equivalence scale adjusting income by the
square root of the number of household members to account
for differences in household size and composition.
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Fig. 4. The German personal income distribution from the 2001 GSOEP-CNEF data file measured in current year euros. (a)
Plot of the empirical CCDF versus income in the log-log scale. The solid line is our theoretical model given by equation (2.1)
with κ = 0.5697 ± 0.0005, α = 2.5659 ± 0.0007, and β = 0.8788 ± 0.0003, which fits very well the data in the whole range from
the low to the high incomes including the intermediate income region. This function is compared with the ordinary stretched
exponential one (dotted line) — fitting the low income data — and with the pure power-law (dashed line) — fitting the high
income data — by using the same parameter values. (b) Histogram plot of the empirical PDF with superimposed fits of the
κ-generalized (solid line) and stretched exponential (dotted line) PDFs using the same parameter values as in panel (a). The
income axis limits have been adjusted according to the range of data to shed light on the intermediate region between the bulk
and the tail of the distribution.

Italy - Income 2002

x

P
>

(x
)

(2βκ)−1/κ x−α/κ

expκ (−βxα)

exp (−βxα)

κ = 0.6944± 0.0006
α = 2.2540± 0.0007
β = 1.0087± 0.0004

10−1 100 101
10−4

10−3

10−2

10−1

100

Italy - Income 2002

x

p
(x

)

αβxα−1√
1+β2κ2x2α

expκ(−βxα)

αβxα−1 exp (−βxα)

κ = 0.6944± 0.0006
α = 2.2540± 0.0007
β = 1.0087± 0.0004

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Same plots as in Figure 4 for the Italian personal income distribution from the 2002 SHIW data file with
κ = 0.6944 ± 0.0006, α = 2.2540 ± 0.0007, and β = 1.0087 ± 0.0004. The income variable is measured in current year euros.

empirical cumulative distribution estimate5 of x along
with three different curves in the log-log scale: the
κ-generalized distribution, equation (2.1); the ordi-
nary stretched exponential (Weibull) distribution, equa-
tion (2.2); the pure power-law distribution, equation (2.3).
In panel (b), the histogram of the reconstructed probabil-

5 The empirical cumulative distribution is equal to the nor-
malized sum of the survey weights of the individuals with in-
comes above x.

ity density6 is contrasted to the theoretical curves corre-
sponding to equations (2.4) and (2.5) with the same pa-
rameter values as in Table 1 and panel (a) of Figures 4–6.
It is clear that the κ-generalized distribution offers a great
potential for describing the data over their whole range,

6 In order to estimate the empirical probability density, we
divide the income axis into bins of width ∆x, calculate the sum
of the survey weights of the individuals with incomes from x
to x + ∆x, and plot the obtained histogram.
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Fig. 6. Same plots as in Figures 4 and 5 for the UK personal income distribution from the 2001 BHPS-CNEF data file with
κ = 0.7080 ± 0.0006, α = 2.7357 ± 0.0009, and β = 0.9433 ± 0.0004. The income variable is measured in current year British
pounds.

from the low to medium income region through to the
high income Pareto power-law regime, including the in-
termediate region for which a clear deviation exists when
two different curves are used7.

4 Final remarks

Since the early study of Pareto, numerous recent empir-
ical works have all shown that the power-law tail is an
ubiquitous feature of income distributions. However, even
100 years after Pareto’s observation, the understanding of
the shape of income distribution is still far to be complete
and definitive. This reflects the fact that there are two
distributions, one for the rich, following the Pareto’s law,
and one for the vast majority of people, which appears to
be governed by a completely different law.

In the present work we have affirmed support for a
new fitting function, having its roots in the framework
of κ-generalized statistical mechanics, which shows to be

7 Pareto’s contribution [3–5] has also stimulated further re-
search on the specification of new models to fit the whole range
of income — the interested reader is referred to the review in
reference [34] and the bibliography therein for an exhaustive
list of personal income distributions and their basic properties.
Weibull, gamma, beta, Dagum, Singh-Maddala, Fisk, Lomax,
Pareto-Lévy, Champernowne — just to name a few distribu-
tions many of which are special or limiting cases of more gen-
eral parametric families, such as the generalized gamma dis-
tribution and the (generalized) beta distribution of the second
kind — have all been used as descriptive models for the overall
distribution of income. Although we are well aware of the exis-
tence of this numerous body of income distributions for which
our work could ultimately result in duplication of effort, our
main goal in this field is to concentrate on the opportunity of
transposing the tools, methods and concepts from statistical
mechanics to economics.

able to describe the data over the entire range, includ-
ing even the power-law tail. This distribution has a bulk
very close to the stretched exponential one — which is re-
covered when the deformation parameter κ approaches to
zero — while its tail decays following a power-law for high
values of income, thus providing a kind of compromise be-
tween the two description.

The good concordance of our generalized statistical
distribution with observational data on personal income
may suggest a new path for investigating economic rela-
tions, namely the development of models within the frame-
work of κ-generalized statistical mechanics.

References

1. A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti,
Econophysics of Wealth Distributions (Springer-Verlag
Italia, Milan, 2005)

2. P. Richmond, S. Hutzler, R. Coelho, P. Repetowicz, in
Econophysics and Sociophysics: Trends and Perspectives,
edited by B.K. Chakrabarti, A. Chakraborti, A. Chatterjee
(Wiley-VCH, Berlin, 2006), pp. 131–160

3. V. Pareto, Œeuvres complètes de Vilfredo Pareto, Tome
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